Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.342
Filtrar
1.
Sci Rep ; 14(1): 6376, 2024 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493225

RESUMO

The thalamic reticular nucleus (TRN) is a brain region that influences vital neurobehavioral processes, including executive functioning and the generation of sleep rhythms. TRN dysfunction underlies hyperactivity, attention deficits, and sleep disturbances observed across various neurodevelopmental disorders. A specialized sarco-endoplasmic reticulum calcium (Ca2+) ATPase 2 (SERCA2)-dependent Ca2+ signaling network operates in the dendrites of TRN neurons to regulate their bursting activity. Phospholamban (PLN) is a prominent regulator of SERCA2 with an established role in myocardial Ca2+-cycling. Our findings suggest that the role of PLN extends beyond the cardiovascular system to impact brain function. Specifically, we found PLN to be expressed in TRN neurons of the adult mouse brain, and utilized global constitutive and innovative conditional genetic knockout mouse models in concert with electroencephalography (EEG)-based somnography and the 5-choice serial reaction time task (5-CSRTT) to investigate the role of PLN in sleep and executive functioning, two complex behaviors that map onto thalamic reticular circuits. The results of the present study indicate that perturbed PLN function in the TRN results in aberrant TRN-dependent phenotypes in mice (i.e., hyperactivity, impulsivity and sleep deficits) and support a novel role for PLN as a critical regulator of SERCA2 in the TRN neurocircuitry.


Assuntos
Proteínas de Ligação ao Cálcio , Neurônios , Núcleos Talâmicos , Camundongos , Animais , Núcleos Talâmicos/fisiologia , Sono/fisiologia , Eletroencefalografia , Camundongos Knockout
2.
J Physiol ; 602(7): 1405-1426, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38457332

RESUMO

Ocular Surface (OS) somatosensory innervation detects external stimuli producing perceptions, such as pain or dryness, the most relevant symptoms in many OS pathologies. Nevertheless, little is known about the central nervous system circuits involved in these perceptions, and how they integrate multimodal inputs in general. Here, we aim to describe the thalamic and cortical activity in response to OS stimulation of different modalities. Electrophysiological extracellular recordings in anaesthetized rats were used to record neural activity, while saline drops at different temperatures were applied to stimulate the OS. Neurons were recorded in the ophthalmic branch of the trigeminal ganglion (TG, 49 units), the thalamic VPM-POm nuclei representing the face (Th, 69 units) and the primary somatosensory cortex (S1, 101 units). The precise locations for Th and S1 neurons receiving OS information are reported here for the first time. Interestingly, all recorded nuclei encode modality both at the single neuron and population levels, with noxious stimulation producing a qualitatively different activity profile from other modalities. Moreover, neurons responding to new combinations of stimulus modalities not present in the peripheral TG subsequently appear in Th and S1, being organized in space through the formation of clusters. Besides, neurons that present higher multimodality display higher spontaneous activity. These results constitute the first anatomical and functional characterization of the thalamocortical representation of the OS. Furthermore, they provide insight into how information from different modalities gets integrated from the peripheral nervous system into the complex cortical networks of the brain. KEY POINTS: Anatomical location of thalamic and cortical ocular surface representation. Thalamic and cortical neuronal responses to multimodal stimulation of the ocular surface. Increasing functional complexity along trigeminal neuroaxis. Proposal of a new perspective on how peripheral activity shapes central nervous system function.


Assuntos
Núcleos Talâmicos , Tálamo , Ratos , Animais , Tálamo/fisiologia , Núcleos Talâmicos/fisiologia , Neurônios/fisiologia , Dor , Face , Córtex Somatossensorial/fisiologia
3.
Brain Struct Funct ; 229(2): 489-495, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38265459

RESUMO

The perigeniculate nucleus (PGN) is a visual part of the thalamic reticular nucleus modulating the information transfer between the lateral geniculate nucleus and the visual cortex. This study focused on the postnatal development of the PGN in cats, using the SMI-32 antibody, which recognizes non-phosphorylated heavy-chain neurofilaments responsible for neuronal structural maturation and is also used as a marker for motion processing, or Y, stream. We questioned whether transient neuronal populations exist in the PGN and can they possibly be related to the Y processing stream. We uncovered a transient, robust SMI-32 staining in the PGN of kittens aged 0-34 days with the significant decline in the cellular density of labeled cells in older animals. According to the double-labeling, in all examined age groups, perigeniculate SMI-32-immunopositive cells are part of the main parvalbumin-positive population. The maximal cellular density of the double-stained cells appeared in animals aged 10-28 days. We also revealed that the most significant growth of perigeniculate cells's soma occurred at three postnatal weeks. The possible link of our data to the development of the Y visual processing stream and to the heterogeneity of the perigeniculate neuronal population is also discussed.


Assuntos
Filamentos Intermediários , Neurônios , Gatos , Animais , Feminino , Neurônios/fisiologia , Corpos Geniculados/metabolismo , Núcleos Talâmicos/fisiologia , Percepção Visual
4.
eNeuro ; 11(1)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38164593

RESUMO

The thalamic reticular nucleus (TRN) inhibits sensory thalamocortical relay neurons and is a key regulator of sensory attention as well as sleep and wake states. Recent developments have identified two distinct genetic subtypes of TRN neurons, calbindin-expressing (CB) and somatostatin-expressing (SOM) neurons. These subtypes differ in localization within the TRN, electrophysiological properties, and importantly, targeting of thalamocortical relay channels. CB neurons send inhibition to and receive excitation from first-order thalamic relay nuclei, while SOM neurons send inhibition to and receive excitation from higher-order thalamic areas. These differences create distinct channels of information flow. It is unknown whether TRN neurons form electrical synapses between SOM and CB neurons and consequently bridge first-order and higher-order thalamic channels. Here, we use GFP reporter mice to label and record from CB-expressing and SOM-expressing TRN neurons. We confirm that GFP expression properly differentiates TRN subtypes based on electrophysiological differences, and we identified electrical synapses between pairs of neurons with and without common GFP expression for both CB and SOM types. That is, electrical synapses link both within and across subtypes of neurons in the TRN, forming either homocellular or heterocellular synapses. Therefore, we conclude that electrical synapses within the TRN provide a substrate for functionally linking thalamocortical first-order and higher-order channels within the TRN.


Assuntos
Sinapses Elétricas , Núcleos Talâmicos , Camundongos , Animais , Sinapses Elétricas/fisiologia , Potenciais de Ação/fisiologia , Núcleos Talâmicos/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia , Tálamo
5.
J Neurosci ; 44(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37945348

RESUMO

The auditory steady-state response (ASSR) is a cortical oscillation induced by trains of 40 Hz acoustic stimuli. While the ASSR has been widely used in clinic measurement, the underlying neural mechanism remains poorly understood. In this study, we investigated the contribution of different stages of auditory thalamocortical pathway-medial geniculate body (MGB), thalamic reticular nucleus (TRN), and auditory cortex (AC)-to the generation and regulation of 40 Hz ASSR in C57BL/6 mice of both sexes. We found that the neural response synchronizing to 40 Hz sound stimuli was most prominent in the GABAergic neurons in the granular layer of AC and the ventral division of MGB (MGBv), which were regulated by optogenetic manipulation of TRN neurons. Behavioral experiments confirmed that disrupting TRN activity has a detrimental effect on the ability of mice to discriminate 40 Hz sounds. These findings revealed a thalamocortical mechanism helpful to interpret the results of clinical ASSR examinations.Significance Statement Our study contributes to clarifying the thalamocortical mechanisms underlying the generation and regulation of the auditory steady-state response (ASSR), which is commonly used in both clinical and neuroscience research to assess the integrity of auditory function. Combining a series of electrophysiological and optogenetic experiments, we demonstrate that the generation of cortical ASSR is dependent on the lemniscal thalamocortical projections originating from the ventral division of medial geniculate body to the GABAergic interneurons in the granule layer of the auditory cortex. Furthermore, the thalamocortical process for ASSR is strictly regulated by the activity of thalamic reticular nucleus (TRN) neurons. Behavioral experiments confirmed that dysfunction of TRN would cause a disruption of mice's behavioral performance in the auditory discrimination task.


Assuntos
Córtex Auditivo , Vigília , Feminino , Masculino , Camundongos , Animais , Camundongos Endogâmicos C57BL , Núcleos Talâmicos/fisiologia , Corpos Geniculados/fisiologia , Córtex Auditivo/fisiologia , Estimulação Acústica/métodos , Neurônios GABAérgicos/fisiologia
6.
Eur J Neurosci ; 59(4): 554-569, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36623837

RESUMO

The thalamic reticular nucleus (TRN) is crucial for the modulation of sleep-related oscillations. The caudal and rostral subpopulations of the TRN exert diverse activities, which arise from their interconnectivity with all thalamic nuclei, as well as other brain regions. Despite the recent characterization of the functional and genetic heterogeneity of the TRN, the implications of this heterogeneity for sleep regulation have not been assessed. Here, using a combination of optogenetics and electrophysiology in C57BL/6 mice, we demonstrate that caudal and rostral TRN modulations are associated with changes in cortical alpha and delta oscillations and have distinct effects on sleep stability. Tonic silencing of the rostral TRN elongates sleep episodes, while tonic silencing of the caudal TRN fragments sleep. Overall, we show evidence of distinct roles exerted by the rostral and caudal TRN in sleep regulation and oscillatory activity.


Assuntos
Sono , Núcleos Talâmicos , Camundongos , Animais , Camundongos Endogâmicos C57BL , Núcleos Talâmicos/fisiologia , Sono/fisiologia , Fenômenos Eletrofisiológicos
7.
Neuroscience ; 532: 87-102, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37778689

RESUMO

The thalamic reticular nucleus (TRN) is a thin sheet of GABAergic neurons surrounding the thalamus, and it regulates the activity of thalamic relay neurons. The TRN has been reported to be involved in sensory gating, attentional regulation, and some other functions. However, little is known about the contribution of the TRN to sequence learning. In the present study, we examined whether the TRN is involved in reward-based learning of action sequence with no eliciting stimuli (operant conditioning), by analyzing the performance of male and female Avp-Vgat-/- mice (Vgatflox/flox mice crossed to an Avp-Cre driver line) on tasks conducted in an operant box having three levers. Our histological and electrophysiological data demonstrated that in adult Avp-Vgat-/- mice, vesicular GABA transporter (VGAT) was absent in most TRN neurons and the GABAergic transmission from the TRN to the thalamus was largely suppressed. The performance on a task in which mice needed to press an active lever for food reward showed that simple operant learning of lever pressing and learning of win-stay and lose-shift strategies are not affected in Avp-Vgat-/- mice. In contrast, the performance on a task in which mice needed to press three levers in a correct order for food reward showed that learning of the order of lever pressing (action sequence learning) was impaired in Avp-Vgat-/- mice. These results suggest that the TRN plays an important role in action sequence learning.


Assuntos
Núcleos Talâmicos , Tálamo , Camundongos , Masculino , Feminino , Animais , Núcleos Talâmicos/fisiologia , Neurônios GABAérgicos/fisiologia , Aprendizagem/fisiologia , Condicionamento Operante
8.
Nature ; 621(7980): 788-795, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37730989

RESUMO

Oxytocin is a neuropeptide that is important for maternal physiology and childcare, including parturition and milk ejection during nursing1-6. Suckling triggers the release of oxytocin, but other sensory cues-specifically, infant cries-can increase the levels of oxytocin in new human mothers7, which indicates that cries can activate hypothalamic oxytocin neurons. Here we describe a neural circuit that routes auditory information about infant vocalizations to mouse oxytocin neurons. We performed in vivo electrophysiological recordings and photometry from identified oxytocin neurons in awake maternal mice that were presented with pup calls. We found that oxytocin neurons responded to pup vocalizations, but not to pure tones, through input from the posterior intralaminar thalamus, and that repetitive thalamic stimulation induced lasting disinhibition of oxytocin neurons. This circuit gates central oxytocin release and maternal behaviour in response to calls, providing a mechanism for the integration of sensory cues from the offspring in maternal endocrine networks to ensure modulation of brain state for efficient parenting.


Assuntos
Comportamento Materno , Vias Neurais , Neurônios , Ocitocina , Vocalização Animal , Animais , Feminino , Camundongos , Sinais (Psicologia) , Hipotálamo/citologia , Hipotálamo/fisiologia , Comportamento Materno/fisiologia , Neurônios/metabolismo , Ocitocina/metabolismo , Fotometria , Núcleos Talâmicos/fisiologia , Vocalização Animal/fisiologia , Vigília
9.
Brain Stimul ; 16(5): 1430-1444, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37741439

RESUMO

BACKGROUND: MRI-guided transcranial focused ultrasound (MRgFUS) as a next-generation neuromodulation tool can precisely target and stimulate deep brain regions with high spatial selectivity. Combined with MR-ARFI (acoustic radiation force imaging) and using fMRI BOLD signal as functional readouts, our previous studies have shown that low-intensity FUS can excite or suppress neural activity in the somatosensory cortex. OBJECTIVE: To investigate whether low-intensity FUS can suppress nociceptive heat stimulation-induced responses in thalamic nuclei during hand stimulation, and to determine how this suppression influences the information processing flow within nociception networks. FINDINGS: BOLD fMRI activations evoked by 47.5 °C heat stimulation of hand were detected in 24 cortical regions, which belong to sensory, affective, and cognitive nociceptive networks. Concurrent delivery of low-intensity FUS pulses (650 kHz, 550 kPa) to the predefined heat nociceptive stimulus-responsive thalamic centromedial_parafascicular (CM_para), mediodorsal (MD), ventral_lateral (VL_ and ventral_lateral_posteroventral (VLpv) nuclei suppressed their heat responses. Off-target cortical areas exhibited reduced, enhanced, or no significant fMRI signal changes, depending on the specific areas. Differentiable thalamocortical information flow during the processing of nociceptive heat input was observed, as indicated by the time to reach 10% or 30% of the heat-evoked BOLD signal peak. Suppression of thalamic heat responses significantly altered nociceptive processing flow and direction between the thalamus and cortical areas. Modulation of contralateral versus ipsilateral areas by unilateral thalamic activity differed. Signals detected in high-order cortical areas, such as dorsal frontal (DFC) and ventrolateral prefrontal (vlPFC) cortices, exhibited faster response latencies than sensory areas. CONCLUSIONS: The concurrent delivery of FUS suppressed nociceptive heat response in thalamic nuclei and disrupted the nociceptive network. This study offers new insights into the causal functional connections within the thalamocortical networks and demonstrates the modulatory effects of low-intensity FUS on nociceptive information processing.


Assuntos
Nociceptividade , Núcleos Talâmicos , Núcleos Talâmicos/fisiologia , Tálamo , Encéfalo , Cognição
10.
Eur J Neurosci ; 58(2): 2469-2503, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37287424

RESUMO

The thalamic reticular nucleus (TRN), receiving excitatory inputs from thalamic nuclei and cortical areas, regulates thalamic sensory processing through its inhibitory projections to thalamic nuclei. Higher cognitive function has been shown to affect this regulation from the prefrontal cortex (PFC). The present study examined how activation of the PFC modulates auditory or visual responses of single TRN cells in anesthetized rats, using juxta-cellular recording and labelling techniques. Electrical microstimulation of the medial PFC did not evoke cell activities in the TRN, but it altered sensory responses in the majority of auditory (40/43) and visual cells (19/20) with regard to response magnitude, latency and/or burst spiking. Alterations in response magnitude were bidirectional, either facilitation or attenuation, including induction of de novo cell activity and nullification of sensory response. Response modulation was observed in early (onset) and/or recurrent late responses. PFC stimulation, either before or after early response, affected late response. Alterations occurred in the two types of cells projecting to the first- and higher-order thalamic nuclei. Further, auditory cells projecting to the somatosensory thalamic nuclei were affected. Facilitation was induced at relatively high incidences as compared with that in the sub-threshold intra- or cross-modal sensory interplay in the TRN where attenuation is predominated in bidirectional modulation. Highly complex cooperative and/or competitive interactions between the top-down influence from the PFC and bottom-up sensory inputs are assumed to take place in the TRN to adjust attention and perception depending on the weights of external sensory signals and internal demands of higher cognitive function.


Assuntos
Vias Auditivas , Núcleos Talâmicos , Ratos , Animais , Ratos Wistar , Vias Auditivas/fisiologia , Núcleos Talâmicos/fisiologia , Tálamo/fisiologia , Córtex Pré-Frontal
11.
Cell Stem Cell ; 30(5): 677-688.e5, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37019105

RESUMO

Human brain organoids provide unique platforms for modeling several aspects of human brain development and pathology. However, current brain organoid systems mostly lack the resolution to recapitulate the development of finer brain structures with subregional identity, including functionally distinct nuclei in the thalamus. Here, we report a method for converting human embryonic stem cells (hESCs) into ventral thalamic organoids (vThOs) with transcriptionally diverse nuclei identities. Notably, single-cell RNA sequencing revealed previously unachieved thalamic patterning with a thalamic reticular nucleus (TRN) signature, a GABAergic nucleus located in the ventral thalamus. Using vThOs, we explored the functions of TRN-specific, disease-associated genes patched domain containing 1 (PTCHD1) and receptor tyrosine-protein kinase (ERBB4) during human thalamic development. Perturbations in PTCHD1 or ERBB4 impaired neuronal functions in vThOs, albeit not affecting the overall thalamic lineage development. Together, vThOs present an experimental model for understanding nuclei-specific development and pathology in the thalamus of the human brain.


Assuntos
Núcleos Talâmicos , Tálamo , Humanos , Núcleos Talâmicos/patologia , Núcleos Talâmicos/fisiologia , Neurônios/fisiologia , Organoides
12.
Cell Rep ; 42(3): 112200, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36867532

RESUMO

Thalamoreticular circuitry plays a key role in arousal, attention, cognition, and sleep spindles, and is linked to several brain disorders. A detailed computational model of mouse somatosensory thalamus and thalamic reticular nucleus has been developed to capture the properties of over 14,000 neurons connected by 6 million synapses. The model recreates the biological connectivity of these neurons, and simulations of the model reproduce multiple experimental findings in different brain states. The model shows that inhibitory rebound produces frequency-selective enhancement of thalamic responses during wakefulness. We find that thalamic interactions are responsible for the characteristic waxing and waning of spindle oscillations. In addition, we find that changes in thalamic excitability control spindle frequency and their incidence. The model is made openly available to provide a new tool for studying the function and dysfunction of the thalamoreticular circuitry in various brain states.


Assuntos
Tálamo , Vigília , Camundongos , Animais , Tálamo/fisiologia , Sono/fisiologia , Núcleos Talâmicos/fisiologia , Percepção , Córtex Cerebral/fisiologia
13.
Neurobiol Dis ; 178: 106025, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36731682

RESUMO

Spike-and-wave discharges (SWDs), generated by the cortico-thalamo-cortical (CTC) network, are pathological, large amplitude oscillations and the hallmark of absence seizures (ASs). SWDs begin in a cortical initiation network in both humans and animal models, including the Genetic Absence Epilepsy Rats from Strasbourg (GAERS), where it is located in the primary somatosensory cortex (S1). The behavioral manifestation of an AS occurs when SWDs spread from the cortical initiation site to the whole brain, however, the mechanisms behind this rapid propagation remain unclear. Here we investigated these processes beyond the principal CTC network, in higher-order (HO) thalamic nuclei (lateral posterior (LP) and posterior (PO) nuclei) since their diffuse connectivity and known facilitation of intracortical communications make these nuclei key candidates to support SWD generation and maintenance. In freely moving GAERS, multi-site LFP in LP, PO and multiple cortical regions revealed a novel feature of SWDs: during SWDs there are short periods (named SWD-breaks) when cortical regions far from S1, such the primary visual cortex (V1), become transiently unsynchronized from the ongoing EEG rhythm. Inactivation of HO nuclei with local muscimol injections or optogenetic perturbation of HO nuclei activity increased the occurrence of SWD-breaks and the former intervention also increased the SWD propagation-time from S1. The neural underpinnings of these findings were explored further by silicon probe recordings from single units of PO which uncovered two previously unknown groups of excitatory neurons based on their burst firing dynamics at SWD onset. Moreover, a switch from tonic to burst firing at SWD onset was shown to be an important feature since it was much less prominent for non-generalized events, i.e. SWDs that remained local to S1. Additionally, one group of neurons showed a reverse of this switch during SWD-breaks, demonstrating the importance of this firing pattern throughout the SWD. In summary, these results support the view that multiple HO thalamic nuclei are utilized at SWD onset and contribute to cortical synchrony throughout the paroxysmal discharge.


Assuntos
Epilepsia Tipo Ausência , Humanos , Ratos , Animais , Epilepsia Tipo Ausência/genética , Eletroencefalografia , Núcleos Talâmicos/fisiologia , Convulsões , Neurônios/fisiologia , Tálamo , Modelos Animais de Doenças
14.
Brain Struct Funct ; 228(2): 433-447, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36239796

RESUMO

OBJECTIVES: The thalamus plays an important role in the mediation and integration of various stimuli (e.g., somatosensory, pain, and vestibular). Whether a stimulus-specific and topographic organization of the thalamic nuclei exists is still unknown. The aim of our study was to define a functional, in vivo map of multimodal sensory processing within the human thalamus. METHODS: Twenty healthy individuals (10 women, 21-34 years old) participated. Defined sensory stimuli were applied to both hands (innocuous touch, mechanical pain, and heat pain) and the vestibular organ (galvanic stimulation) during 3 T functional MRI. RESULTS: Bilateral thalamic activations could be detected for touch, mechanical pain, and vestibular stimulation within the left medio-dorsal and right anterior thalamus. Heat pain did not lead to thalamic activation at all. Stimuli applied to the left body side resulted in stronger activation patterns. Comparing an early with a late stimulation interval, the mentioned activation patterns were far more pronounced within the early stimulation interval. CONCLUSIONS: The right anterior and ventral-anterior nucleus and the left medio-dorsal nucleus appear to be important for the processing of multimodal sensory information. In addition, galvanic stimulation is processed more laterally compared to mechanical pain. The observed changes in activity within the thalamic nuclei depending on the stimulation interval suggest that the stimuli are processed in a thalamic network rather than a distinct nucleus. In particular, the vestibular network within the thalamus recruits bilateral nuclei, rendering the thalamus an important integrative structure for vestibular function.


Assuntos
Núcleos Talâmicos , Tálamo , Humanos , Feminino , Adulto Jovem , Adulto , Tálamo/fisiologia , Núcleos Talâmicos/fisiologia , Dor , Núcleos Ventrais do Tálamo , Percepção da Dor
15.
Neurobiol Dis ; 176: 105934, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36442714

RESUMO

Status epilepticus (SE) is a life-threatening emergency that can result in de novo development or worsening of epilepsy. We tested the hypothesis that the aberrant cortical output during neocortical focal status epilepticus (FSE) would induce structural and functional changes in the thalamus that might contribute to hyperexcitability in the thalamocortical circuit. We induced neocortical FSE by unilateral epidural application of convulsant drugs to the somatosensory cortex of anesthetized mice of both sexes. The resulting focal EEG ictal episodes were associated with behavioral seizures consisting of contralateral focal myoclonic activity and persisted for 2-3 h. Ten and 30 days later, brains were processed for either immunohistochemistry (IHC) or in vitro slice recordings. Sections from the center of the thalamic reticular nucleus (nRT, see methods), the ventral posterolateral nucleus (VPL), and the ventral posteromedial nucleus (VPM) from the ventrobasal nucleus (VB) were used to measure density of NeuN-immunoreactive neurons, GFAP-reactive astrocytes, and colocalized areas for VGLUT1 + PSD95- and VGLUT2 + PSD95-IR, presumptive excitatory synapses of cortical and thalamic origins. Whole-cell voltage-clamp recordings were used to measure spontaneous EPSC frequency in these nuclei. We found that the nRT showed no decrease in numbers of neurons or evidence of reactive astrogliosis. In contrast, there were increases in GFAP-IR and decreased neuronal counts of NeuN positive cells in VB. Dual IHC for VGLUT1-PSD95 and VGLUT2-PSD95 in VB showed increased numbers of excitatory synapses, likely of both thalamic and cortical origins. The frequency, but not the amplitude of sEPSCs was increased in nRT and VB neurons. SIGNIFICANCE STATEMENT: Previous reports have shown that prolonged neocortical seizures can induce injury to downstream targets that might contribute to long-term consequences of FSE. Effects of FSE in thalamic structures may disrupt normal thalamo-cortical network functions and contribute to behavioral abnormalities and post-SE epileptogenesis. Our results show that a single episode of focal neocortical SE in vivo has chronic consequences including cell loss in VB nuclei and increased excitatory connectivity in intra-thalamic and cortico-thalamic networks. Additional experiments will assess the functional consequences of these alterations and approaches to mitigate cell loss and alterations in synaptic connectivity.


Assuntos
Neocórtex , Estado Epiléptico , Masculino , Feminino , Camundongos , Animais , Tálamo , Neurônios , Núcleos Talâmicos/fisiologia , Convulsões
16.
Nat Neurosci ; 26(1): 116-130, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36550291

RESUMO

Corticothalamic pathways, responsible for the top-down control of the thalamus, have a canonical organization such that every cortical region sends output from both layer 6 (L6) and layer 5 (L5) to the thalamus. Here we demonstrate a qualitative, region-specific difference in the organization of mouse corticothalamic pathways. Specifically, L5 pyramidal cells of the frontal cortex, but not other cortical regions, establish monosynaptic connections with the inhibitory thalamic reticular nucleus (TRN). The frontal L5-TRN pathway parallels the L6-TRN projection but has distinct morphological and physiological features. The exact spike output of the L5-contacted TRN cells correlated with the level of cortical synchrony. Optogenetic perturbation of the L5-TRN connection disrupted the tight link between cortical and TRN activity. L5-driven TRN cells innervated thalamic nuclei involved in the control of frontal cortex activity. Our data show that frontal cortex functions require a highly specialized cortical control over intrathalamic inhibitory processes.


Assuntos
Núcleos Talâmicos , Tálamo , Camundongos , Animais , Núcleos Talâmicos/fisiologia , Tálamo/fisiologia , Células Piramidais , Lobo Frontal
17.
Brain Res ; 1799: 148174, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36427592

RESUMO

Previous studies have demonstrated that thalamic reticular nucleus (TRN) and the sub-nuclei play important roles in pain sensation. Our previous findings showed that activating parvalbumin-positive (PV+) neurons in dorsal sector of TRN (dTRN) could reduce the pain threshold and consequently increase the pain sensitivity of mice. Recent studies have shown that activation of GABAergic projection of TRN to ventrobasal thalamus (VB) alleviated pathological pain. GABAergic neurons in TRN are mainly PV+ neurons. However, the exact roles of ventral TRN (vTRN) PV+ neurons in pain sensation remain unclear. In this study, the designer receptors exclusively activated by designer drugs (DREADD) method was used to activate the PV+ neurons in vTRN of PV-Cre transgenic mice, and the mechanical threshold and thermal latency were measured to investigate the regulatory effects of vTRN on pain sensitivity in mice. Thereafter, PV-Cre transgenic mice, conditional anterograde axonal tract tracing, and immunohistochemistry were used to investigate the distribution of PV+ neurons fibers in vTRN. The results showed that the activation of PV+ neurons in vTRN increased the mechanical threshold and thermal latency, which indicated reduction of pain sensitivity. The fibers of these neurons mainly projected to ventral posterolateral thalamic nucleus (VPL), ventral posteromedial thalamic nucleus (VPM), ventrolateral thalamic nucleus (VL), centrolateral thalamic nucleus (CL) and various other brain regions. These findings indicated that activation of PV+ neurons in the vTRN decreased pain sensitivity in mice, which provided additional evidence on the mechanisms of PV+ neurons of TRN in regulating neuralgia.


Assuntos
Núcleos Intralaminares do Tálamo , Neuralgia , Camundongos , Animais , Núcleos Ventrais do Tálamo , Limiar da Dor , Núcleos Talâmicos/fisiologia , Camundongos Transgênicos , Neurônios GABAérgicos/fisiologia
18.
J Neurosci ; 42(42): 7921-7930, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36261269

RESUMO

Sensory loss leads to widespread cross-modal plasticity across brain areas to allow the remaining senses to guide behavior. While multimodal sensory interactions are often attributed to higher-order sensory areas, cross-modal plasticity has been observed at the level of synaptic changes even across primary sensory cortices. In particular, vision loss leads to widespread circuit adaptation in the primary auditory cortex (A1) even in adults. Here we report using mice of both sexes in which cross-modal plasticity occurs even earlier in the sensory-processing pathway at the level of the thalamus in a modality-selective manner. A week of visual deprivation reduced inhibitory synaptic transmission from the thalamic reticular nucleus (TRN) to the primary auditory thalamus (MGBv) without changes to the primary visual thalamus (dLGN). The plasticity of TRN inhibition to MGBv was observed as a reduction in postsynaptic gain and short-term depression. There was no observable plasticity of the cortical feedback excitatory synaptic transmission from the primary visual cortex to dLGN or TRN and A1 to MGBv, which suggests that the visual deprivation-induced plasticity occurs predominantly at the level of thalamic inhibition. We provide evidence that visual deprivation-induced change in the short-term depression of TRN inhibition to MGBv involves endocannabinoid CB1 receptors. TRN inhibition is considered critical for sensory gating, selective attention, and multimodal performances; hence, its plasticity has implications for sensory processing. Our results suggest that selective disinhibition and altered short-term dynamics of TRN inhibition in the spared thalamic nucleus support cross-modal plasticity in the adult brain.SIGNIFICANCE STATEMENT Losing vision triggers adaptation of the brain to enhance the processing of the remaining senses, which can be observed as better auditory performance in blind subjects. We previously found that depriving vision of adult rodents produces widespread circuit reorganization in the primary auditory cortex and enhances auditory processing at a neural level. Here we report that visual deprivation-induced plasticity in adults occurs much earlier in the auditory pathway, at the level of thalamic inhibition. Sensory processing is largely gated at the level of the thalamus via strong cortical feedback inhibition mediated through the thalamic reticular nucleus (TRN). We found that TRN inhibition of the auditory thalamus is selectively reduced by visual deprivation, thus playing a role in adult cross-modal plasticity.


Assuntos
Endocanabinoides , Núcleos Talâmicos , Masculino , Feminino , Camundongos , Animais , Núcleos Talâmicos/fisiologia , Tálamo/fisiologia , Vias Auditivas/fisiologia , Transmissão Sináptica/fisiologia
19.
Eur J Neurosci ; 56(10): 5869-5887, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36089888

RESUMO

As the functional properties of a cortical area partly reflect its thalamic inputs, the present study compared collateral projections arising from various rostral thalamic nuclei that terminate across prefrontal (including anterior cingulate) and retrosplenial areas in the rat brain. Two retrograde tracers, fast blue and cholera toxin B, were injected in pairs to different combinations of cortical areas. The research focused on the individual anterior thalamic nuclei, including the interanteromedial nucleus, nucleus reuniens and the laterodorsal nucleus. Of the principal anterior thalamic nuclei, only the anteromedial nucleus contained neurons reaching both the anterior cingulate cortex and adjacent cortical areas (prefrontal or retrosplenial), though the numbers were modest. For these same cortical pairings (medial prefrontal/anterior cingulate and anterior cingulate/retrosplenial), the interanteromedial nucleus and nucleus reuniens contained slightly higher proportions of bifurcating neurons (up to 11% of labelled cells). A contrasting picture was seen for collaterals reaching different areas within retrosplenial cortex. Here, the anterodorsal nucleus, typically provided the greatest proportion of bifurcating neurons (up to 15% of labelled cells). While individual neurons that terminate in different retrosplenial areas were also found in the other thalamic nuclei, they were infrequent. Consequently, these thalamo-cortical projections predominantly arise from separate populations of neurons with discrete cortical termination zones, consistent with the transmission of segregated information and influence. Overall, two contrasting medial-lateral patterns of collateral projections emerged, with more midline nuclei, for example, nucleus reuniens and the interoanteromedial nucleus innervating prefrontal areas, while more dorsal and lateral anterior thalamic collaterals innervated retrosplenial cortex.


Assuntos
Giro do Cíngulo , Núcleos Talâmicos , Ratos , Animais , Núcleos Talâmicos/fisiologia , Tálamo , Córtex Cerebral/fisiologia , Núcleos da Linha Média do Tálamo/fisiologia , Vias Neurais/fisiologia
20.
Nature ; 610(7930): 135-142, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36104560

RESUMO

Distinguishing sensory stimuli caused by changes in the environment from those caused by an animal's own actions is a hallmark of sensory processing1. Saccades are rapid eye movements that shift the image on the retina. How visual systems differentiate motion of the image induced by saccades from actual motion in the environment is not fully understood2. Here we discovered that in mouse primary visual cortex (V1) the two types of motion evoke distinct activity patterns. This is because, during saccades, V1 combines the visual input with a strong non-visual input arriving from the thalamic pulvinar nucleus. The non-visual input triggers responses that are specific to the direction of the saccade and the visual input triggers responses that are specific to the direction of the shift of the stimulus on the retina, yet the preferred directions of these two responses are uncorrelated. Thus, the pulvinar input ensures differential V1 responses to external and self-generated motion. Integration of external sensory information with information about body movement may be a general mechanism for sensory cortices to distinguish between self-generated and external stimuli.


Assuntos
Movimento , Movimentos Sacádicos , Córtex Visual , Animais , Camundongos , Movimento/fisiologia , Estimulação Luminosa , Retina/fisiologia , Movimentos Sacádicos/fisiologia , Núcleos Talâmicos/fisiologia , Córtex Visual/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...